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A method of determining the dynamic characteristics of multilayered semi-bounded media, using a special representation of the 
solution for one layer and applicable for an arbitrary number of layers [1], is extended to the case of media with defects of the 
crack-cavity type at the interfaces of the layers. Functional-matrix relations are obtained which enable a system of integral equations, 
connecting the jumps in the displacements and stresses on the sides of the cracks, to be written. Examples of the use of these 
relations for certain special types of media are given. © 2004 Elsevier Ltd. All rights reserved. 

When investigating the dynamic modes of oscillation of layered semi-bounded media, the form of the 
functional-matrix relations, which are the basis of constructing integral equations and their systems, 
which connect the displacements and stresses, is of considerable importance. The main difficulties in 
the numerical realization of existing methods of solving problems for multilayered media are due to 
the presence of increasing exponential components in the fundamental solutions of the corresponding 
systems of differential equations, which lead to instability of the numerical procedures for solving the 
boundary-value problem and make the linear algebraic systems, which arise when satisfying the boundary 
conditions, ill-posed. All these approaches require solutions of high-order systems of equations, and 
the greater the number of layers the greater the difficulties of a computational nature which arise. To 
overcome these, a number of methods have been developed, a review and a comparative analysis of 
which are given in [1-4]. For example, a method was proposed in [2, 5], the stability of which is ensured 
by separating the exponential components and taking them outside the frame of the computational 
process. Solutions have been constructed for multilayered media in problems of statics [6]. 

However, it cannot be assumed that all the problems are thereby removed and optimal algorithms 
have been developed covering all changes in the parameters of the problem. 

The use of these approaches is complicated considerably or becomes impossible when describing the 
dynamic behaviour of elastic semibounded inhomogeneous media, containing defects like cracks or 
inclusions. Moreover, the pressing need to investigate problems in this formulation is dictated by 
their practical importance in seismology, seismic prospecting, flaw detection, electronics and other 
areas. 

New formulations of this kind of problem have been presented, a classification of the inhomogeneities 
has been given, and a method of solution has been proposed, and also, the conditions for the localization 
of the vibration process of a system of cracks and/or inclusions were proposed for first time in 
[7, 8]. 

Below we propose an effective analytical method of constructing a solution of dynamic problems for 
layered media when discontinuous conditions are imposed on the layer interfaces. The method is based 
on the use of a special representation of the solution for one layer, and it is applicable for an arbitrary 
number of layers and arrangements of the inhomogeneities. The advantage of this method is the 
possibility of constructing simple algorithms of numerical analysis, applicable for a wide range of variation 
of the parameters of the problem. Unlike existing approaches, it does not require a numerical solution 
of high-order algebraic systems, which arise when satisfying the boundary conditions, and it does not 
contain increasing exponential components in the representation of the solution obtained. A solution 
of the problem for a uniform semibounded medium (a layer or half-space), containing a system of plane 
parallel-oriented crack-cavities is then obtained as a special case, if we assume the physical-mechanical 
parameters of the layers to be alike. 
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1. O S C I L L A T I O N S  OF A PACKET OF LAYERS 

Suppose the medium consists of a packet of N plane-parallel layers of thickness H = 2(hl + h2 + ... 
+ hu) with a rigidly clamped lower face and occupies a region - H  <~ z <~ O, --~ <~ x, y <~ + ~  (hk is the 
half-thickness of the kth layer). The surface of the medium is subjected to a certain dynamic force, 
characterized by the vector to(x, y, t), having as its components the shear stresses tlo and t20 and normal 
stresses t30. 

We will introduce a local system of coordinates for each layer 

t ` - I  

zt` = z + 2 Z h i + h t ` ,  k = 1,2 . . . . .  N 
i=1 

Then the solution for the kth layer in terms of Fourier transforms (for the harmonic problem) or 
Fourier-Laplace transforms (for the non-stationary problem) will be defined by the expression [3, 9] 

where 

Wt`(Zk) = ~[B+(zt`)Tk_l + B-(zk)Tk],  -hk  < Zk < ht` (1.1) 

T O = L F t  o, Tt` = LFtt`, Wt` = L F w  k 

gk is the shear modulus of the kth layer, F is the two-dimensional Fourier transformation operator with 
respect to the variables x, y, L is the Laplace operator with respect to time t, tk = {tlk, tzk, t3k} are the 
stress vectors, characterizing the interaction between the layers, and wk = {Wlk, W2k, W3k} is a vector 
whose components are the horizontal displacements Wlk and W2k and vertical displacement W3k of points 
of the kth layer. 

We will assume that there are discontinuous boundary conditions for the displacements along the 
interfaces of the layers. We will write the condition on the lower face of the packet of layers 

WN(--hN) = 0 (1.2) 

and the conditions for the layers to adjoin 

Wt`(-ht`) = Wt`+l(hk+i)+f  k, k = 1,2 . . . . .  N - 1  (1.3) 

where fk {flk, fzk, f3k} is the vector of the jump in the displacements at the interfaces of the layers. 
Condition (1.3), taking expression (1.1) into account, leads to a recurrence relation connecting the 

characteristics of the stress-strain state the layers with the parameters of their contact interaction 

B+(-ht`)Tt`_ 1 + B-(-ht`)Tk = gt`[B+(ht` + l)Tk + B_(hk+ l)Tk+ l] + ktt`fk (1.4) 

We will introduce the vectors Ak and the matrices Fk 

At, = Dt`+lAk+l+ktt`f k, Fk = B _ ( - h k ) - g k B + ( h t ` + l ) - D k + l G k +  1 (1.5) 

k = 1,2 . . . . .  N - 1  

Here 

A N = 0, F N =- B ( - h N )  

G k = -B+(-ht`L Dt`+l = gt`B (hk+l)Fkl+l 

From condition (1.2) we obtain 

FNTN = GNTN-  l (1.6) 

Then the recurrence relations (1.4) for determining the stress vectors between the layers, taking equality 
(1.6) and notation (1.5) into account, can be written in the form 

FkT k -- GkTk_l+At`, k = 1,2 . . . .  ,N  
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Using the last relations, assuming k = 1, 2, . . . ,  N in succession, we determine the forces acting on 
the kth layer Tk due to the surface load T o and the jumps in the displacements fk 

1 k m 

Xk = 1"I (Fi-IGi)To + ~ 1--[ (F/IGi)G~]A,~, 
i = k  m = l i = k  

k = 1,2 .. . . .  N (1.7) 

The matrices A~ are given by the formulae (1.5). 
Substituting the expressions obtained for the forces (1.7) into (1.1), we determined the displacements 

of the points of the medium in the kth layer 

~k  -1 Wk(zk)  = ((B+(zk) + B_(Zk)F k Gk)II k + B_(zk)FklAk), k = 1, 2 .....  N (1.8) 

where 
1 k - I  m 

l ' I t  H ( F ~ I G i ) T 0  + 2 H _1 -1 = ( F i  G i ) G  m A m 
i = k - I  m = l i = k - 1  

If the surface is stress-free, we have 

m• 
-1 -1 

T k = G i G m  A m 

= l ' , , i = k  / 

Wk(zk) (B+(zk) -I- -1 -1 -1 -1 B-(zk)Vk Gk) ~ 1-I = (Fi Gi)G m A m+B(zk)Fk A k 
m = l i = k - 1  

Relations (1.7) enables us to construct a system of integral equations connecting the displacements 
and stresses of the sides of the cracks, situated at the joint of the layers in sections of these cracks. 

Assuming fk = 0 in relations (1.7) and (1.8), we arrive at the case of ideal contact between the layers 

1 
-1 

T k = H ( F i  Gi)To, 
i = k  

Wk(zk) = ~ K ( z k ) T  0 

The matrix function 

K(zk) = 
1 

-1 
(B+(zk) + B_(zk)Fk Gk) l"I (Fi-IG/) 

i = k - I  

is Green's matrix symbol, corresponding to the dynamic problem. 
The matrix functions B+(z) for different types of media (elastic, electroelastic, anisotropic, 

thermoelastic and thermoelectroelastic) have a different structure and were given previously in [3]. For 
example, for an anisotropic layer in the case of the harmonic problem 

Be(z ) = 

2 -+ . + 
m I + ~2n-+ + + a ~ ( m  1 -  n-) +t~m 2 

+ + 2 + + .  +_ 
a ~ ( m  7 -  n-) ~ m 1 + o~2n +- _ t~m 2 

-icxk~ - i~k~ _k  a +  + 

(1.9) 

+ _ + F/-+ + _ + m~ = M i ± Mi , = N + N +, k~ = K i +_- K i ; i = 1, 2 

The elements K[' M~-, N-, A- correspond to the skew-symmetric problem for a single layer and are 
obtained from the corresponding elements Ki+'Mi +, N +, A + of the symmetric problem by making the 
replacement sh <--> ch. 
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In the special case of an isotropic medium 

where oj are the roots of the characteristic equation of the problem for a single layer, fi is the reduced 
frequency of the oscillations, a is a characteristic linear dimension (for example, the areas of action of 
the surface load), p is the density, p is the shear modulus, v is Poisson's ratio for a specific layer, occupying 
the region (lz I S h, -.. < x, y, < m), and a and p are parameters of the Fourier transformation. 

Note that when calculating the elements of the matrices B+(zk) in formulae (1.10) it is necessary to 
take the corresponding parameters of the kth layer (pk, pk, vk, hk). 

We will give examples of the use of the recurrence relations for certain special cases. 
1. When N = 1 it follows from expressions (1.7) and (1.8) that 

which corresponds to the problem of the oscillations of a layer rigidly attached to a non-deformable 
base. 

2. When N = 2 we obtain from (1.7) the following expressions for the stresses 

and from Eq. (1.8) we obtain the following expression for the displacements in the upper layer 

and in the lower layer 

In this case 

3. For N= 3 we will obtain formulae for the displacements for a three-layer base. The displacements 
of points of the upper layer are described by formula (1.12), the displacements of points of the second 
layer are described by formula (1.13) with the addition of the term B-(Z~)F;'A~ to its right-hand side, 
while the displacements of the points of the third layer are described by the relation 
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The  genera l  f o rm of  the matr ix  F1 in this case is identical  with the fo rm of  the analogous  matr ix  for  
case 2, while 

F 2 = B _ ( - h 2 ) - g 2 B + ( h 3 ) - g 2 B _ ( h 3 ) F 3 1 G 3 ,  F 3 = B_(-h3) 

A 1 = ~ l f l + D 2 ~ 2 f  2, A 2 = bt2f2 

2. T H E  O S C I L L A T I O N  O F  A L A Y E R E D  H A L F - S P A C E  

The  solution of  the p rob l em of  a mult i layered medium,  rigidly a t tached to an elastic half-space,  is easily 
ob ta ined  by letting the thickness of  the lower layer (k = N)  tend  to infinity, and replacing the system 
of  coordinates  as follow z* = ZN - hN. Taking the limit we obtain  

FN-I = B-( -hN-I) -gN-1B+(0)  

F k = B _ ( - h k ) - g k B + ( h k + l ) - D k + l G k + l ,  k = 1,2 . . . . .  N - 2  

We obtain the stresses acting on the joint  o f  the layers in the fo rm (1.7), where  k = 1, 2, . . . ,  N - 1, 
while TN = 0. To calculate the d isplacements  of  an arbi t rary point  of  the m e d i u m  we have 

W~(zk) = ((B+(zk) + B_(zk)Fk Gk)Ilk + B_(zk)FklAk) (2.1) 

k - 1  

zk = z + 2 ~ _ , h i + h k ,  k = 1,2 . . . . .  N - 1  
i = l  

W N ( Z *  ) = ~ N B + ( z * ) I I N ,  

N-1  

Z* = Z + 2 E h  i 
i=1  

The  fo rm of  Hk was der ived above.  
Since when  h N ---> ,~ we have 

- + + o + o + + o 
mT = n = kT = O, m i = 2 M  = m i ,  n = 2N+ = n ,  k i = 2 K  = k 

then 
o o  

B_~(z*)=0,  B+(Z*) = lim B+(zN) = lim B + ( z * + h N )  = 
h N  -.-). ~ h N  --.-), ~ 

2 0 i]2n0 0 +. 0 m I + ~ ( m  1 - n  o ) _ t ~ m  2 

0 02 0 2 0 . 0 
~[~(m 1 - n  °) p m I + ¢X n +l~Jm 2 

. 0  - i~k° l  +k~ - t ~ k  1 

I f  the underlying half-space is isotropic, the quanti t ies occurr ing in the matr ix  B+(z) have the fo rm 

0 0 ~zZ/(~ 2(y2) m I = 2132(- ~,2ealZ + ~'e%Z)/(~,ZA), n = e 

0 c2z 
m 2 = 2 ( - y e  ~ z +  crlo2e )/A 

0 O~z OIZ 0 
k I = 2 ( - y e  - +cyl(Y2e )/A, k 2 = 2 ~ l ( - ) ~ Z e O ~ Z + y e C ' Z ) / A  

A = 4(y  z -  ~201~2), O 2 = ~ z  •2, i = 1, 2, y = ~ 2 _ . 2 / 2  

2 
~ z  = f ~ ( 1  - 2Vu)/(2 - 2VN) ,  ~'~2 = PNO.)2a2/I-tN 

(PN, gN and v N are the density, shear  modulus  and Poisson's  rat io of  the half-space).  
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It can be seen from the above formulae that the condition W(z) ~ 0, z ~ - ~  is satisfied in the case 
of a layered half-space. 

In particular, for a uniform half-space we obtain the simple formula 

W(z) = ~B~(z)T0 (z <- 0) 

For a layer rigidly attached to a half-space, the stresses T1 on the layer interface and the half-space 
have the form (1.11), while the displacements in the layer (-2hl ~< z <~ 0) have the form (1.12), but in 
this case 

F 1 = B _ ( - h l ) - g l B ~ ( 0  ) 

The displacements in the half-space (z ~< -2h l )  will be described by the expression 

W2(Z ) = ~2B+(z 4" 2h I)F11 ( -  B+(-hl)T 0 + ~t 1 fl)  

Applying an inverse Fourier transformation to relation (1.8), we obtain an integral representation 
of the solution for the harmonic problem (the factor e 4~t is omitted) 

W(x'Y'Z'O')) = - 1  ~ f W(z)e-i((~x+fSY'd~d~ 
4/~ 2 . . . .  

k-I 

W(z)-=W(t~,~,Zk,(O), Z = Z k - 2 E  hi-hk, 
i = 1  

k = 1 , 2  . . . . .  N 

(2.2) 

For the non-stationary problem it is necessary to put co = ip in Eq. (2.2) (p is the parameter of the 
Laplace transformation) and to apply an inverse Laplace transformation. It was shown in [3, 10] that 
the solution of the non-stationary problem can also be represented in the form 

w(x, y, Z, t) = 2IRe[w(x,  y, z, ¢o)]cos(o)t)do) 

0 

Remark. We will assume that it is necessary to determine the displacements of points of the medium 
at a depth z = z0. Then, if 

s-I s 

2 Z hi<lz°l <-2 y__, h i 
i = 1  i = 1  

for numerical calculations in expressions (1.8) or (2.1) one must assume k = s (s <~ N). 

3. O S C I L L A T I O N S  OF A LAYER OR OF A H A L F - S P A C E  W I T H  
D E F E C T S  

The solution of the problem for a homogeneous semibounded medium (a layer or half-space), containing 
N - 1 plane parallel-oriented cavities or cracks, is described by the functional-matrix relations for the 
stresses (1.7) and the displacements (1.8) and (2.1), in which we must assume the physical-mechanical 
parameters to be alike for all k (k = 1, 2 . . . .  , N). 

Thus, assuming gl, 2 = ~l., Pl, 2 • D, v1, 2 = v, hi, 2 = h, we obtain from relations (1.7) for To = 0 and 
N = 2 a solution of the harmonic three-dimensional problem for a single crack, situated in a 
homogeneous layer of thickness H =  4h at the same distance 2h from its boundaries, 

T 1 = ~ F l l f l  (3 .1)  
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where 

F~ = B_(-h) - B÷(h) + B_(h)B-_I(-h)B+(-h) 

f~(c~, 13, f~) = A w ( a ,  ~, a )  

A W  = W + - W  -, W + = W l ( - h l )  = W(-h), W- = W2(h2)  = W(h) 

Here it is assumed that the sides of the cracks do not interact and that the stresses on these sides are 
equal to T 1 = T + = T- (i.e. there are static stresses which "open up" the sides of the crack). 

The functional matrix relation (3.1) enables us to write a system of integral equations for the jump 
in the displacements Aw(x, y) on the sides of the crack 

Sfk(x_~, y_q)Aw(~, rl)d{drl tl 
s 

(x,y)e S 

k(x, Y) = 4@S !F-11(o~, ~, ~)e-i(~x +BY)doM ~ 

where fil and ~2 are  the contours of integration, the rules for choosing which were given in [11], and S 
is the region occupied by the crack. 

The further solution of this system requires the use of the method of fictitious absorption, the 
factorisation method or numerical methods [2, 3, 11]. 

Hence, the proposed approach enables one to model any combination of continuous and discontinuous 
conditions at the interfaces of the layers. Moreover, the advantage of the use of this representation for 
each layer is that it is possible to investigate media with an arbitrary number of layers, each of which 
can possess complex physical-mechanical properties. 
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